direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C24⋊3C4, C25⋊4C4, C26.1C2, C24.163D4, C25.82C22, C24.526C23, C23.159C24, C24⋊17(C2×C4), (C23×C4)⋊2C22, (C22×C4)⋊7C23, C23⋊7(C22⋊C4), C23.596(C2×D4), C22.50(C23×C4), C22.59(C22×D4), C22.105C22≀C2, C23.205(C22×C4), C2.1(C2×C22≀C2), C22⋊3(C2×C22⋊C4), (C22×C22⋊C4)⋊3C2, C2.4(C22×C22⋊C4), (C2×C22⋊C4)⋊68C22, SmallGroup(128,1009)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C24⋊3C4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e2=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, cd=dc, fcf-1=ce=ec, de=ed, df=fd, ef=fe >
Subgroups: 3212 in 1732 conjugacy classes, 300 normal (6 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C23, C23, C23, C22⋊C4, C22×C4, C22×C4, C24, C24, C24, C2×C22⋊C4, C2×C22⋊C4, C23×C4, C25, C25, C24⋊3C4, C22×C22⋊C4, C26, C2×C24⋊3C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C24, C2×C22⋊C4, C22≀C2, C23×C4, C22×D4, C24⋊3C4, C22×C22⋊C4, C2×C22≀C2, C2×C24⋊3C4
(1 5)(2 6)(3 7)(4 8)(9 21)(10 22)(11 23)(12 24)(13 32)(14 29)(15 30)(16 31)(17 27)(18 28)(19 25)(20 26)
(1 31)(2 26)(3 29)(4 28)(5 16)(6 20)(7 14)(8 18)(9 25)(10 32)(11 27)(12 30)(13 22)(15 24)(17 23)(19 21)
(1 9)(2 26)(3 11)(4 28)(5 21)(6 20)(7 23)(8 18)(10 32)(12 30)(13 22)(14 17)(15 24)(16 19)(25 31)(27 29)
(1 9)(2 10)(3 11)(4 12)(5 21)(6 22)(7 23)(8 24)(13 20)(14 17)(15 18)(16 19)(25 31)(26 32)(27 29)(28 30)
(1 31)(2 32)(3 29)(4 30)(5 16)(6 13)(7 14)(8 15)(9 25)(10 26)(11 27)(12 28)(17 23)(18 24)(19 21)(20 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
G:=sub<Sym(32)| (1,5)(2,6)(3,7)(4,8)(9,21)(10,22)(11,23)(12,24)(13,32)(14,29)(15,30)(16,31)(17,27)(18,28)(19,25)(20,26), (1,31)(2,26)(3,29)(4,28)(5,16)(6,20)(7,14)(8,18)(9,25)(10,32)(11,27)(12,30)(13,22)(15,24)(17,23)(19,21), (1,9)(2,26)(3,11)(4,28)(5,21)(6,20)(7,23)(8,18)(10,32)(12,30)(13,22)(14,17)(15,24)(16,19)(25,31)(27,29), (1,9)(2,10)(3,11)(4,12)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,31)(26,32)(27,29)(28,30), (1,31)(2,32)(3,29)(4,30)(5,16)(6,13)(7,14)(8,15)(9,25)(10,26)(11,27)(12,28)(17,23)(18,24)(19,21)(20,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,21)(10,22)(11,23)(12,24)(13,32)(14,29)(15,30)(16,31)(17,27)(18,28)(19,25)(20,26), (1,31)(2,26)(3,29)(4,28)(5,16)(6,20)(7,14)(8,18)(9,25)(10,32)(11,27)(12,30)(13,22)(15,24)(17,23)(19,21), (1,9)(2,26)(3,11)(4,28)(5,21)(6,20)(7,23)(8,18)(10,32)(12,30)(13,22)(14,17)(15,24)(16,19)(25,31)(27,29), (1,9)(2,10)(3,11)(4,12)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,31)(26,32)(27,29)(28,30), (1,31)(2,32)(3,29)(4,30)(5,16)(6,13)(7,14)(8,15)(9,25)(10,26)(11,27)(12,28)(17,23)(18,24)(19,21)(20,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,21),(10,22),(11,23),(12,24),(13,32),(14,29),(15,30),(16,31),(17,27),(18,28),(19,25),(20,26)], [(1,31),(2,26),(3,29),(4,28),(5,16),(6,20),(7,14),(8,18),(9,25),(10,32),(11,27),(12,30),(13,22),(15,24),(17,23),(19,21)], [(1,9),(2,26),(3,11),(4,28),(5,21),(6,20),(7,23),(8,18),(10,32),(12,30),(13,22),(14,17),(15,24),(16,19),(25,31),(27,29)], [(1,9),(2,10),(3,11),(4,12),(5,21),(6,22),(7,23),(8,24),(13,20),(14,17),(15,18),(16,19),(25,31),(26,32),(27,29),(28,30)], [(1,31),(2,32),(3,29),(4,30),(5,16),(6,13),(7,14),(8,15),(9,25),(10,26),(11,27),(12,28),(17,23),(18,24),(19,21),(20,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])
56 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2AM | 4A | ··· | 4P |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 |
type | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C4 | D4 |
kernel | C2×C24⋊3C4 | C24⋊3C4 | C22×C22⋊C4 | C26 | C25 | C24 |
# reps | 1 | 8 | 6 | 1 | 16 | 24 |
Matrix representation of C2×C24⋊3C4 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 2 |
0 | 0 | 0 | 0 | 0 | 2 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,2,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,3,0,0,0,0,0,2,2] >;
C2×C24⋊3C4 in GAP, Magma, Sage, TeX
C_2\times C_2^4\rtimes_3C_4
% in TeX
G:=Group("C2xC2^4:3C4");
// GroupNames label
G:=SmallGroup(128,1009);
// by ID
G=gap.SmallGroup(128,1009);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,758]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^2=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,f*c*f^-1=c*e=e*c,d*e=e*d,d*f=f*d,e*f=f*e>;
// generators/relations